首页> 外文OA文献 >GPU-Accelerated Parallel Finite-Difference Time-Domain Method for Electromagnetic Waves Propagation in Unmagnetized Plasma Media
【2h】

GPU-Accelerated Parallel Finite-Difference Time-Domain Method for Electromagnetic Waves Propagation in Unmagnetized Plasma Media

机译:GpU加速并行时域​​有限差分法   非磁化等离子体介质中的电磁波传播

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The finite-difference time-domain (FDTD) method has been commonly utilized inthe numerical solution of electromagnetic (EM) waves propagation through theplasma media. However, the FDTD method may bring about a significant incrementin additional run-times consuming for computationally large and complicated EMproblems. Graphics Processing Unit (GPU) computing based on Compute UnifiedDevice Architecture (CUDA) has grown in response to increased concern forreduction of run-times. We represent the CUDA-based FDTD method with theRunge-Kutta exponential time differencing scheme (RKETD) for the unmagnetizedplasma implemented on GPU. In the paper, we derive the RKETD-FDTD formulationfor the unmagnetized plasma comprehensively, and describe the detailedflowchart of CUDA-implemented RKETD-FDTD method on GPU. The accuracy andacceleration performance of the posed CUDA-based RKETD-FDTD method implementedon GPU are substantiated by the numerical experiment that simulates the EMwaves traveling through the unmagnetized plasma slab, compared with merelyCPU-based RKETD-FDTD method. The accuracy is validated by calculating thereflection and transmission coefficients for one-dimensional unmagnetizedplasma slab. Comparison between the elapsed times of two methods proves thatthe GPU-based RKETD-FDTD method can acquire better application accelerationperformance with sufficient accuracy.
机译:有限差分时域(FDTD)方法已普遍用于通过等离子介质传播的电磁(EM)波的数值解。但是,FDTD方法可能会导致计算量大且复杂的EM问题的额外运行时间显着增加。随着对减少运行时间的关注日益增加,基于Compute UnifiedDevice Architecture(CUDA)的图形处理单元(GPU)计算已经增长。我们用Runge-Kutta指数时间差分方案(RKETD)来表示基于CUDA的FDTD方法,该方法适用于在GPU上实现的非磁化等离子体。在本文中,我们全面推导了未磁化等离子体的RKETD-FDTD公式,并描述了CUDA在GPU上实现的RKETD-FDTD方法的详细流程图。与仅基于CPU的RKETD-FDTD方法相比,通过数值实验可以证实在GPU上实现的基于CUDA的RKETD-FDTD伪装方法的准确性和加速性能,该数值模拟了通过未磁化等离子体平板的EM波。通过计算一维未磁化等离子体平板的反射系数和透射系数来验证精度。两种方法经过时间的比较证明,基于GPU的RKETD-FDTD方法可以以足够的精度获得更好的应用程序加速性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号